If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X-112=180
We move all terms to the left:
X^2+X-112-(180)=0
We add all the numbers together, and all the variables
X^2+X-292=0
a = 1; b = 1; c = -292;
Δ = b2-4ac
Δ = 12-4·1·(-292)
Δ = 1169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1169}}{2*1}=\frac{-1-\sqrt{1169}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1169}}{2*1}=\frac{-1+\sqrt{1169}}{2} $
| 3n/10=3= | | 3/4(4x+16)+2x=7 | | X^2+x-212=180 | | 7+5x=39 | | 4x+3=1/2×+10 | | -4(x+10)–6=-3(x–2) | | 1/3(6+4d)-3d=-10 | | 21-5x-(3x-1)=5x-12 | | 4x^2-11=53 | | 5x+(8/x)+12=0 | | -3+4x=18 | | 71-1x=-11+131 | | 40x=-12x | | 8y-2y=-10 | | s/2+s/4+s/8=s-1800 | | 2x+7=6x+2 | | s/2+s/4+s/8+1800=s | | -7x-5(-x-9)=55 | | 40x+500=x | | 3/5x=22/5 | | 7x-2(3x-6)=3 | | -1/9(x+27)+1/3(x+3)=x+6 | | 7y=56-y | | -2w=-10/3 | | 7^(3x-5)=34 | | 2v+24=8v | | n^2-18n=-11 | | x-8=2x-32 | | w-6.3=6.3 | | -5/8v=15 | | 4s-2s-2s+s=12 | | 7p-7p+2p+3p+2p=14 |